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We explore rogue wave emergence in generic wave systems governed by the nonlinear Schrödinger equation. 
We highlight the interplay between the stochastic focusing induced by a random chirp of a continuous wave 
condensate and modulation instability of the condensate to periodic and/or random perturbations. We show that 
regardless of its statistical properties, the random chirp of the condensate leads to a non-Gaussian, heavy-tailed 
probability density distribution of peak powers of the waves excited atop of the condensate, which is a statistical 
signature of rogue waves, or more broadly, extreme events in physics.
1. Introduction

The original, and rightfully dreaded, ocean rogue waves manifest 
themselves as the waves of unusually high amplitudes, and therefore 
destructive power, on the surface of deep water [1]; rogue waves have 
a statistical nature because they occur randomly, yet more often than 
is anticipated by generic Gaussian statistics. Hence, the non-Gaussian 
statistics of rogue waves can be considered their most fundamental sig-

nature that allows us to extrapolate to a broader class of extreme event 
phenomena which need not be even waves [2].

To date, extreme events have been discovered in the areas of physics 
as diverse as optics and condensed matter physics [3]. Most work on 
the extreme event appearance in nonlinear wave systems has focused on 
rogue wave excitation through modulation instability (MI) of a continu-

ous wave background [4,5], although different emergence scenarios can 
be envisioned in the supercontinuum generation in optical fibers [6], or 
in resonant systems [7,8]. In a standard setting, extreme events spring 
from a uniform background unstable to MI which is typically induced 
by statistically stationary, localized additive noise [9,10].

In most realistic situations, however, there exists an external driv-

ing source such as random impurities in optical and/or matter wave 
systems, or random bursts of wind in the case of ocean rogue waves. 
We conjecture that under favorable conditions, the external driving acts 
in concert with MI to facilitate extreme event excitation in nonlinear 
wave systems. This can become particularly pronounced if the external 
factors cause random focusing of the waves, thereby further promoting 
high-amplitude wave events.

* Corresponding author.

In this work, we test this hypothesis by considering waves described 
within the framework of the nonlinear Schrödinger equation (NLSE), 
which applies generically to weakly nonlinear, weakly dispersive wave 
systems of any physical nature [11]. Instructively, the NLSE serves as a 
basis for the now-well-recognized mathematical analogy between rogue 
waves in deep ocean and in optical fibers [12]. To set the stage, we 
first briefly examine completely deterministic solutions to NLSE arising 
from MI of a constant background with neither additive nor multi-

plicative noise present. Next, we proceed to examine a more realistic 
model of a condensate with a randomly perturbed amplitude (addi-

tive noise) and a random overall phase chirp (multiplicative noise). 
Although, numerous past research has been concerned with the role 
of initial conditions for RW formation [3,6,13,14], including partially 
coherent input waves [15], as well as various forms of random per-

turbations of the condensate [6,16–19], we stress that the concept of 
multiplicative noise manifested by an overall random chirp of the con-

densate has been largely unexplored to date. It is worth mentioning that 
the effects of deterministic linear gain/loss on the extreme event genera-

tion were studied in [20]. In the short-term limit, such a gain/loss term 
in the NLSE can be viewed as mathematically equivalent to the pres-

ence of a linear chirp of the condensate. However, there are two key 
differences between the approach of [20] and this work. First, an NLSE 
with linear gain/loss is equivalent to the standard conservative NLSE, 
describing the evolution of a linearly chirped condensate, only for a spe-

cific time—or propagation distance in the optical case—dependence of 
the effective nonlinearity coefficient; this is a common feature of inte-

grable open systems governed by inhomogeneous NLSEs [21]. Second, 
and most important, while the authors of Ref. [20] consider determin-
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istic driving only, our approach makes it possible to explore random 
driving. In this sense, we argue that the introduced multiplicative noise 
incorporates, to some extent, the effects of random external driving. We 
determine the probability density function (PDF) of peak powers of the 
waves excited by such randomly driven MI and demonstrate that, in-

deed, the PDF becomes strongly non-Gaussian irrespective of the origin 
and statistical nature of the multiplicative noise, thereby underscoring 
the universality of our findings.

2. Theoretical formulation

We consider the nonlinear Schrodinger equation (NLSE) governing 
the evolution of an optical pulse/water wave envelope Ψ. The NLSE can 
be expressed in the dimensional form as

𝑖𝜕𝜁Ψ−
𝛽2
2
𝜕2
𝜏𝜏
Ψ+ 𝛾|Ψ|2Ψ = 0. (1)

Here, in the context of optical pulses in fibers to be specific, 𝛽2 is the 
group velocity dispersion (GVD) in 𝑝𝑠2𝑘𝑚−1 and 𝛾 is a nonlinearity coef-

ficient in 𝑊 −1𝑘𝑚−1. Further, 𝜁 and 𝜏 refer to the propagation distance 
and time in the reference frame moving with the group velocity of the 
pulse, respectively. In the anomalous dispersion regime, 𝛽2 < 0 which is 
the parameter regime of interest to us throughout this work.

We study two sets of initial conditions. First, we introduce a de-

terministic initial condition corresponding to a periodically perturbed, 
chirped condensate by the expression

Ψ(𝜏,0) =
√
𝑃0 (1 + 𝜀 cos𝜔𝜏) 𝑒𝑥𝑝

(
−𝑖𝐶𝜏2∕2

)
. (2)

Here 𝑃0 is a power of the condensate (cw background), 𝐶 is a conden-

sate chirp parameter, 𝜀 and 𝜔 are the modulation depth and frequency 
of the harmonic perturbation, respectively; we stress that all parameters 
are purely deterministic here. We note that we chose a generic quadratic 
phase of the condensate which triggers focusing or spreading, depend-

ing on the sign of the chirp. The situation is analogous to a thin lens 
that imposes a quadratic spatial phase on an incident beam. The lat-

ter is then either focused or defocused depending on the sign of the 
focal length [22]; the temporal lens formally works the same way due 
to the space-time duality of beam diffraction in free space and pulse 
spreading in a dispersive medium [23]. Although the phase of a real-

istic fluctuating condensate field can have a complicated dependence 
on time, the generic quadratic phase approximation qualitatively cap-

tures the essence of additional focusing that, in conjunction with MI, 
promotes extreme event occurrence in such a condensate. We then ex-

amine the latter which gives rise to the following initial condition:

Ψ(𝜏,0) =
√
𝑃0 [1 + 𝜀𝑓 (𝜏)] 𝑒𝑥𝑝

(
−𝑖𝐶𝜏2∕2

)
; 𝑓 ∗(𝜏) = 𝑓 (𝜏), (3)

where 𝑓 (𝜏) is a random amplitude perturbation and 𝐶 is a random chirp. 
The amplitude perturbation is a zero-mean Gaussian random process 
which can be modeled by a sufficient number 𝑁 of uncorrelated har-

monics

𝑓 (𝜏) = 1
𝑁

𝑁∑
𝑛=1

cos𝜔𝑛𝜏, (4)

with a set of random frequencies {𝜔𝑛}. We consider several statistical 
models for random chirp.

3. Numerical simulations

To be specific, we perform numerical simulations for pulses in a stan-

dard single-mode silica glass fiber. Importantly, we operate within the 
MI range to ensure that the rogue waves are triggered in the system. 
The modulation instability gain, determined through the linear stability 
analysis against small perturbations, reads [24]√

4 2
2

𝐺𝑀𝐼 (𝜔) = |𝛽2𝜔 | |𝛽2 |𝐿𝑁𝐿

−𝜔 , (5)
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Table 1

Parameter values implemented in the simulation of a 
single-mode optical fiber operating at 1550 𝑛𝑚.

Parameter Symbol Value Unit

GVD 𝛽2 -20 𝑝𝑠2𝑘𝑚−1

Nonlinearity coefficient 𝛾 1.1 𝑊 −1𝑘𝑚−1

Power 𝑃0 30 𝑊

Characteristic NL length 𝐿𝑁𝐿 30.3 𝑚

Fig. 1. Modulation instability gain spectrum given by Eq. (5) and displayed for 
the parameter values listed in Table 1. The MI range is indicated with the double 
ended arrows.

Fig. 2. Intensity profile of a chirpless condensate at the nonlinear stage of MI 
evolution in the silica glass fiber. The intensity is given in a dB scale. The pa-

rameter values are given in Table 1.

where we defined a characteristic nonlinear length 𝐿𝑁𝐿 =
(
𝛾𝑃0

)−1
. The 

MI gain maximum corresponds to the frequency 𝜔𝑚𝑎𝑥 =
√
2∕(|𝛽2|𝐿𝑁𝐿). 

Accordingly, we show the range of simulation parameters employed in 
our model in Table 1.

Using these parameters, we can depict the MI gain in Fig. 1. It follows 
that the latter is constrained to the frequency range of up to approxi-

mately 400 𝐺𝐻𝑧. While within this range and keeping the modulation 
depth to be 𝜀 = 0.05, we present our results for the deterministic and ran-

dom condensates. We stress that throughout our simulations we work 
with a dimensionless chirp parameter 𝐶0 which is obtained by scal-

ing the actual chirp 𝐶 to the frequency of maximum MI gain such that 
𝐶 = 𝐶0 ∗ 𝑓𝑚𝑎𝑥, where 𝑓𝑚𝑎𝑥 = 𝜔𝑚𝑎𝑥∕2𝜋.

We first study the deterministic initial conditions by numerically 
solving Eq. (1) subject to Eq. (2) in the chirpless case, 𝐶 = 0. In Fig. 2, 
we exhibit the simulated envelope evolution along the fiber. We obtain 
a train of Akhmediev breathers at the nonlinear stage of MI in com-

plete agreement with the earlier work [25] in the same parameter range. 
Next, introducing a nonzero chirp into the initial conditions, we observe 

that the MI evolution scenario is drastically modified. Indeed, we can 
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Fig. 3. Chirped condensate evolution for (a) 𝐶0 = −0.75 (negative chirp) showing spreading of the condensate, (b) 𝐶0 = 0.75 (positive chirp) revealing focusing of 
an Akhmediev breather train formed over sufficiently short propagation distances. The parameter values are given in Table 1, (c) and (d) are magnified versions of 
the portions within red boxes to illustrate fine scale effects of the chirp.
Fig. 4. Field power distribution of the condensate as a function of time in the 
focal region with additional focusing imposed by a positive chirp.

infer from Fig. 3 that depending on the sign of the chirp, the conden-

sate either spreads out (defocussing induced by the negative chirp) or 
Akhmediev breathers sharply focus (positive chirp) even for relatively 
modest magnitudes of the dimensionless chirp 𝐶0 .

A closer look at the results in Fig. 3a reveals that in the negative chirp 
case, any intensity bump atop the background spreads out so quickly 
that Akhmediev breathers cannot even form, implying that such a chirp 
can inhibit extreme event excitation. On the other hand, we can infer 
from Fig. 3b that while a classic Akhmediev breather train forms over 
short enough propagation distances, the positive chirp drastically alters 
the long-term MI evolution scenario.

Specifically, we observe substantial focusing that culminates in the 
emergence of massive amplitude waves carrying powers in excess of 80 
times that of the input condensate. In Fig. 4, we exhibit a representative 
example of the field power distribution of the condensate within the 
focusing region where the peak power sharply increases due to a positive 
3

chirp as is visible in Fig. 3b.
Fig. 5. Nonlinear stage of the MI evolution of a randomly perturbed, chirpless 
condensate. The parameter values are given in Table 1.

Next, consider random initial conditions, Eqs. (3) and (4), to illus-

trate the MI evolution of randomly driven condensate. To this end, we 
first display the nonlinear evolution stage of randomly perturbed, chirp-

less condensate in Fig. 5. We can infer from the figure that the random 
MI evolution greatly resembles the deterministic one, except the train of 
perfectly periodic Akhmediev breathers is replaced with a random sea 
of colliding solitons riding atop of the condensate.

We are now in a position to examine the statistics of peak powers of 
said solitons emerging on the background. To this end, we have studied 
several statistical models of the chirp. The first model corresponds to an 
exponential distribution of the chirp [26] defined as

𝑃 (𝐶0) =
⎧⎪⎨ 1⟨𝐶0⟩ 𝑒𝑥𝑝(−𝐶0∕⟨𝐶0⟩) ; 𝐶0 ≥ 0,

(6)
⎪⎩ 0, 𝐶0 < 0,
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Fig. 6. Peak power PDF of an ensemble of 1000 chirped condensate realizations 
with exponentially distributed chirp. The chirp distribution is completely deter-

mined by the average chirp ⟨𝐶0⟩ shown in the legend. The parameter values are 
given in Table 1.

where the angle brackets denote ensemble averaging. Such a chirp dis-

tribution can accidentally occur in localized areas of the ocean where 
the wind gusts favor a certain set of directions over the others, resulting 
in a net focusing effect for the waves. At the same time, a similar dis-

tribution can be engineered in optical fibers by employing linear [27]

or quadratic [28] electro-optical effect with a fluctuating control field 
of slow (microwave) frequency to realize a time lens [23]. In Fig. 6 we 
show the probability density function (PDF) of peak powers of the wave 
envelopes propagating in the fiber for three values of the average chirp 
of the condensate. All PDFs are shown in the logarithmic scale so that 
any deviation from a straight line signifies non-Gaussian statistics. The 
results clearly show that the higher the average condensate chirp, the 
longer the PDF tail, and hence the greater the chance of finding waves 
with extremely high peak powers; as well, in all three cases the PDFs 
differ from a straight line showing unambiguous signatures of extreme 
event emergence.

At this stage, one may wonder whether a chirped condensate model 
not statistically favoring positive over negative chirps would be more 
realistic: After all, the wind gusts in the ocean randomly change their di-

rection over short spans of time and random fiber impurities can equally 
likely up-chirp or down-chirp a traveling pulse. To remove the sign chirp 
bias, we alternatively model the chirp as a random telegraph process so 
that the chirp can take on just two values 𝑎 and −𝑎 and switch from one 
to the other randomly. The mathematical representation of this process 
can be expressed in the form of a state transition matrix [29] as follows:

𝑃 =
[
𝑝11 𝑝12
𝑝21 𝑝22

]
, (7)

where

𝑝𝑖𝑗 = 𝑃 (𝑋𝑚+1 = 𝑗 ∣𝑋𝑚 = 𝑖) for 𝑖, 𝑗 ∈ {1,2}, (8)

and

2∑
𝑘=1

𝑝𝑖𝑘 = 1. (9)

Here 𝑋𝑚 is the chirp value at time 𝑚 ∈ {0, 1, 2, ..}, and 𝑃
(
𝑋𝑚+1 = 𝑗 ∣

𝑋𝑚 = 𝑖
)

is a conditional probability for the chirp to take the value of 
state 𝑗, given its prior state 𝑖. States [1, 2] refer to the alternating chirp 
values [𝑎, −𝑎]. We can readily realize this model on the optical table 
by employing the electro-optical effect mediated by a dc voltage with 
randomly switching polarity, for example. In Fig. 7 we display the PDF 
of peak powers of the waves excited at the nonlinear MI stage from 
such a telegraph-chirped random condensate. Instructively, the PDF in 
Fig. 7 is qualitatively similar to that in Fig. 6. At first glance, it might 
4

seem counter-intuitive, considering that the telegraph process does not 
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Fig. 7. Peak power PDF of an ensemble of 1000 chirped condensate realizations 
with the chirp represented by a telegraph process: The condensate chirp switches 
between 0.75 and -0.75 at random times. The parameter values are given in 
Table 1.

discriminate between positive and negative chirp values. We notice, 
however, that only focused ensemble members contribute to enhanced 
extreme event generation, while spreading ones play no role here. It is 
then not surprising that the telegraph-like chirped condensate promotes 
extreme events just like a condensate with a continuous chirp distribu-

tion. As a final note, we mention that we have performed simulations 
with a multitude of other chirp distribution models all of which yield-

ing the same qualitative result: Chirping the condensate skews the PDF 
tail toward high power events, making our findings generic.

4. Summary

The nonlinear regime of modulation instability of a continuous wave 
background (condensate) sets the stage for a number of fascinating non-

linear phenomena. Although the emergence of rogue waves from the 
condensate due to MI has been widely studied to date [24,30–37], the 
MI of a condensate stirred by random external perturbations has not 
been carefully examined yet. In this work, we have explored extreme 
event excitation triggered by the MI of a randomly chirped condensate. 
We have shown that in the case of a deterministic chirped condensate, 
the sign of the chirp drastically affects the evolution scenario of the 
nonlinear stage of MI leading to either spreading and dissipation of any 
perturbations arising atop of the condensate, or to strong focusing of 
said perturbations. Having examined a number of statistical models of 
the condensate chirp, we have demonstrated numerically that irrespec-

tive of the statistical nature of the condensate chirp, the mere presence 
of the latter promotes high power event emergence at a rate higher 
than that predicted by Gaussian statistics. Our results are applicable 
in equal measure to rogue waves in deep oceans as well as in optical 
fibers which are governed by the nonlinear Schrödinger equation. We 
stress that although modeling a generic external driving through a ran-

dom condensate chirp may seem as an oversimplification, the generic 
character of our findings makes this model a starting point to explore 
a fundamental interplay between MI and random external driving that 
facilitates extreme event excitation in nonlinear wave systems.
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